

SERVIZI DI TARATURA

Il laboratorio di Carugate è attualmente accreditato da IECEE, ACCREDIA, OSHA, IAS e altri ancora. Un'accurata taratura delle apparecchiature sensibili è un elemento essenziale per mantenere la propria competitività nel mercato globale e collaborare con un partner rispettato e affidabile come UL può fare la differenza.

Informazioni sulla conferma metrologica

Il termine "conferma metrologica" include generalmente la taratura e la verifica, oltre che la regolazione e/o la riparazione eventualmente necessarie per le apparecchiature la cui accuratezza non è più compresa nei limiti. La taratura e la verifica di un'apparecchiatura sono operazioni critiche che permettono ai laboratori di continuare a fornire risultati accurati. A causa del trasporto, dell'installazione e dell'usura dovuta all'uso, anche le apparecchiature della migliore qualità devono essere tarate/verificate prima della messa in servizio e periodicamente durante l'uso.

Di seguito viene riportata una definizione del concetto di conferma metrologica dell'International Organization for Standardization (ISO):

Conferma metrologica <<ISO 10012 Par. 3.5>>

Set di operazioni richieste per garantire la conformità delle apparecchiature ai requisiti applicabili al loro uso previsto.

NOTA: la conferma metrologica include generalmente la taratura e la verifica, qualsiasi regolazione o riparazione, la successiva ritaratura, il confronto con i requisiti metrologici per l'uso previsto dell'apparecchiatura, oltre alla sigillatura e all'etichettatura.

Ta

Taratura << Guida ISO 99 (VIM) Par. 2.39>>

Operazione che, in condizioni pre-determinate, prevede nella prima fase di stabilire un rapporto tra i valori quantitativi e le incertezze di misurazione indicate negli standard di misurazione, e tra le indicazioni corrispondenti e le incertezze di misurazione. Nella seconda fase, queste informazioni vengono usate per stabilire il rapporto necessario per ottenere il risultato della misurazione da un'indicazione.

Verifica <<Guida ISO 99 (VIM) Par. 2.44>>

Fornire prove oggettive che un dato oggetto soddisfi i requisiti specificati.

Regolazione di un sistema di misurazione << Guida ISO 99 (VIM) Par. 3.11>>

Set di operazioni eseguite su un sistema di misurazione mirate a verificare che sia in grado di fornire le indicazioni prescritte corrispondenti ai valori dati di una quantità da misurare.

In qualità di laboratorio accreditato da ILAC-MRA e IAS, il centro di taratura di Carugate di UL è attrezzato per effettuare le operazioni di taratura sia internamente che presso le sedi dei clienti.

I servizi disponibili includono la taratura, la verifica, la regolazione e l'etichettatura.

Per garantire la massima praticità, tutti i nostri servizi di taratura sono modulari. Ciò significa che i clienti possono richiedere il processo di conferma metrologica completo oppure solo una parte. Ogni processo completo include la valutazione della conformità dello strumento rispetto agli standard a cui è assoggettato. Inoltre, i nostri esperti di taratura forniscono consigli su come gestire gli strumenti di misurazione che non sono più conformi alle specifiche o fuori tolleranza.

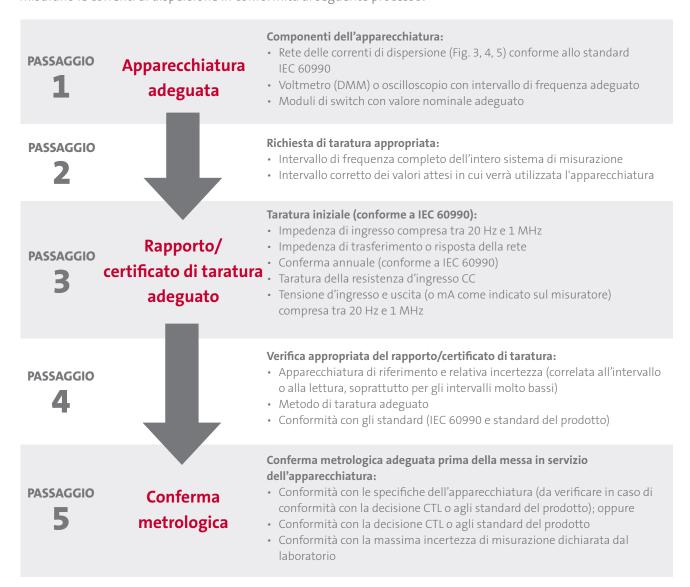
TARATURA VERIFICA REGOLAZIONE (se necessaria) Loop di ritaratura

Il centro di taratura di Carugate è in grado di tarare strumentazione commerciale e/o personalizzata, in varie quantità, appartenente alle seguenti categorie:

- Strumentazione elettrica: DMM, wattmetro, misuratore di armoniche di tensione e corrente, misuratore per correnti di dispersione e circuito di misura delle correnti di dispersione, pinza amperometrica, con o senza amperometro incorporato
- **Strumentazione termica:** dispositivo di acquisizione della temperatura per la validazione del forno, termocoppia, camera climatica, centralina climatica
- **Strumentazione per la misura delle dimensioni:** calibro, micrometro, metro a nastro, sonda di prova
- EMC: cavo RF, accoppiatore direzionale, ISN, LISN, attenuatore, pinza EM, amplificatori RF, antenna Van Veen Loop, bobina Helmholtz, CDN, generatore di burst/surge/onde oscillatorie sinusoidali smorzate non ripetitive, analizzatori e generatori di armoniche e interarmoniche, flicker
- Altra strumentazione: apparecchiature di misurazione/trasduttori della pressione idraulica, apparecchiature di misurazione della forza, della coppia, delle dimensioni e del peso

La conferma metrologica delle apparecchiature è soggetta alla taratura, che ha lo scopo di verificare che le apparecchiature siano conformi ai requisiti normativi internazionali e/o alle norme specifiche per le quali vengono usate.

La taratura consente di:


- Fornire la tracciabilità conforme al Sistema Internazionale (SI)
- Conformarsi ai requisiti generali di ISO/IEC 17025 relativi alla competenza dei laboratori di prova e taratura
- Conformarsi al Programma di accettazione dei dati di UL per la certificazione UL semplificata
- Garantire la conformità dei prodotti in base a misurazioni tracciabili, come richiesto dai regolamenti IECEE e dal marchio CE
- Garantire la riproducibilità delle misurazioni durante lo sviluppo di norme e/o prodotti

Misurazione delle correnti di dispersione

I cinque passaggi necessari per portare a termine correttamente il processo di taratura

Il centro di taratura di UL è attrezzato per fornire un supporto/formazione completi sulle apparecchiature che misurano le correnti di dispersione in conformità al seguente processo:

PERCHÉ IL PROCESSO È CRITICO

Molti clienti/centri di taratura non conoscono gli standard dei prodotti e i requisiti dello standard IEC 60990 e conseguentemente la strumentazione di fine linea presenta le seguenti carenze:

- Circuito di misura delle correnti di dispersione non calibrato fino a 1 MHz
- Voltmetro interno o DMM con intervallo di frequenza inferiore a 1 MHz
- Metodo di taratura limitato a 50/60 Hz
- Impedenza di ingresso e trasferimento non verificata

Taratura del misuratore per correnti di dispersione

Servizi di taratura accreditati

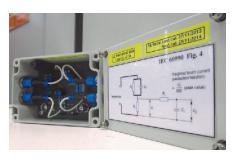
Misuratori per correnti di dispersione CA Simpson 229-2: apparecchiatura tipica usata per la misurazione delle correnti di dispersione secondo gli standard UL

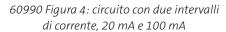
Requisiti dell'apparecchiatura:

- a) Un'impedenza di ingresso di 1500 Ω resistivi shuntata da una capacitanza di 0,15 μF
- b) Indicazione pari a 1,11 volte la media della forma d'onda composita raddrizzata a onda piena della tensione misurata sul resistore o della corrente che passa attraverso il resistore
- c) Su un intervallo di frequenza di 0 100 kHz, i circuiti di misurazione devono avere una risposta in frequenza (rapporto tra l'indicazione e il valore effettivo della corrente) uguale al rapporto dell'impedenza di un resistore da 1500 Ω shuntato da un condensatore da 0,15 μ F a 1500 Ω

Requisiti di taratura:

- a) Con un'indicazione di 0,5 mA, il margine o errore non può superare il 5% a 60 Hz
- b) Risposta in frequenza
- c) Fattore di forma




Circuiti delle correnti di dispersione

Realizzazione/vendita di hardware dedicato per la misurazione delle correnti di dispersione

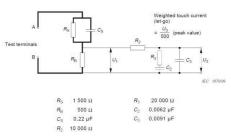


Figura 4: circuito di misura delle correnti di contatto ponderate (perception/reach)

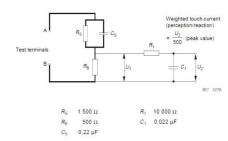


Figura 5: circuito di misura delle correnti di contatto ponderate (let-go)

Servizi di taratura iniziali

- Due diversi intervalli di corrente: 20 mA e 100 mA
- Scelta dei componenti ideali
- Regolazione di ciascun ramo del circuito in base alla taratura dell'impedenza di trasferimento da 20 Hz a 1 Mhz
- Tolleranza appropriata in tutto l'intervallo: da 20 Hz a 1 MHz

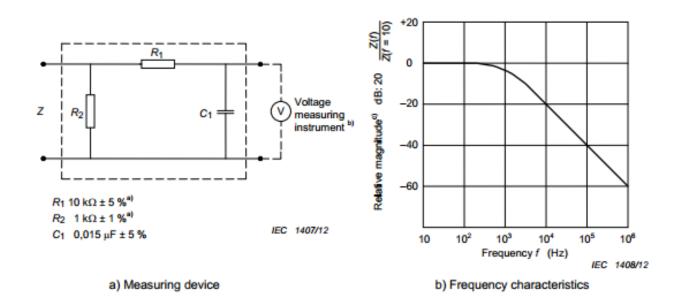
Servizi di taratura successivi

Per essere certi che le apparecchiature continuino a fornire le prestazioni richieste, è necessario tararle regolarmente. Dopo la taratura iniziale, le apparecchiature del cliente verranno tarate in base ai seguenti criteri.

VANTAGGI

- Soddisfa i requisiti di precisione dello standard IECEE OD-5014 fino a 100 kHz
- Consente di effettuare le regolazioni necessarie mentre il processo è in corso

STANDARD APPLICABILI


• IEC 60990, 60335-1, 60950, 60065, 62109, 60598, 61347-1, 61558-1, 60730, 61010

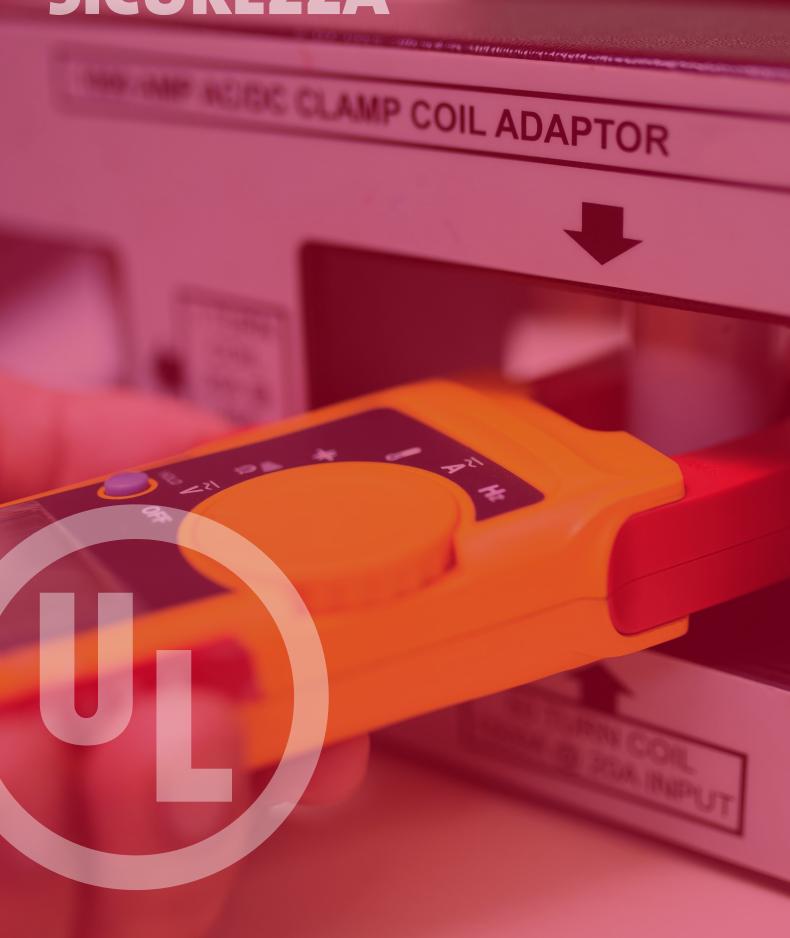
	Leakage (Touch) current (CTL OP 251)															
	Up to 30mA			50Hz up to 60Hz			±3,5 %	, O								
				>60Hz up to 5kHz		±5% FE		ER IMPEDANCE				LEAKAGE CUR- RENT				
ı	v aroc			>5kHz up to 1Mz		130%		Ref	ULRSS		S447 + AT118					
	quen- ey Hz)		Measured value	S447 Vout	Vout/ Vin		Calculated value	Erro	H	Uncer- tainty	Value	Ac- ceptance	Result	UIN- STR	Ac- ceptance	Re- sult
_	H∠	ohm	ohm	V				%rd	g	%rdg	%rdg	%rdg	OK/ NOK	%rdg	%rdg	OK/ NOK
	60	1986	1984,02	0,75245	0,251	498	497,625	0,1		1,2	1,2	2,5	OK	2,8	3,5	OK
- 5	000	512	511,82	0,399320	0,133	68,3	68,127	0,3		1,2	1,2	2,5	OK	2,8	3,5	OK
100	00000	476	474,77	0,00353	0,001	0,345	0,335	2,9		1,6	3,7	20,0	OK	20,0	30,0	OK

Circuiti delle correnti di dispersione conformi alle norme medicali

Realizzazione/vendita di hardware dedicato per la misurazione delle correnti di dispersione

IEC 60601-1 Figura 12: esempio di dispositivo di misurazione e delle sue caratteristiche di frequenza

I valori permessi si applicano alle correnti che attraversano la rete (IEC 60601-1 Figura 12 a), misurati come indicato nella figura o da un dispositivo che misura i contenuti di frequenza delle correnti (vedere IEC 60601-1 Figura 12 b). I valori si applicano alle forme d'onda c.c., c.a. e composite. Se non diversamente indicato, possono essere in c.c. O r.m.s.


STANDARD APPLICABILI

• IEC 60601-1

I valori permessi per le correnti di dispersione del paziente e le correnti ausiliarie del paziente sono riportati nelle Tabelle 3 e 4. I valori di c.a. si applicano a correnti che abbiano una frequenza non inferiore a 0,1 Hz.

SERVIZI DI TARATURA SICUREZZA

Valutazione della conformità

Prove di laboratorio per la misura dell'efficienza energetica per i motori trifase a induzione

I servizi in loco includono:

- Analisi di tutti i certificati di taratura associati alle apparecchiature usate per le prove
- Emissione di certificati di taratura accreditati, se richiesto
- Valutazione dell'incertezza di misurazione di tutte le apparecchiature usate per le prove, ottenuta mediante un certificato di taratura accreditato esterno
- Emissione di un rapporto di conformità per l'esecuzione della prova del motore trifase a induzione in conformità con lo standard

Grandezze interessate dall'analisi:

- Tensione
- Corrente
- Potenza attiva
- Coppia
- · Velocità in giri/min
- Temperatura
- Resistenza degli avvolgimenti

STANDARD APPLICABILI

CSA C390-10

Servizi per camere climatiche/forni

Taratura e verifica in loco delle camere climatiche/dei forni

La taratura accreditata da UL viene effettuata per la temperatura e l'umidità, e include la misurazione al centro e in altri 9-15 punti di misurazione, a seconda delle dimensioni della camera. I risultati di taratura vengono confrontati con i requisiti dei diversi standard e/o le specifiche del cliente. Il certificato viene emesso quando la taratura è terminata.

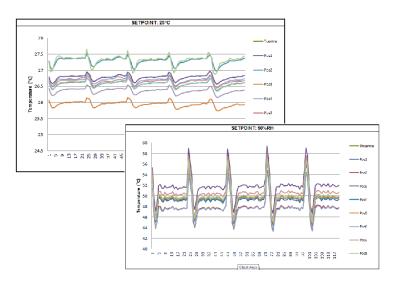


Figura 2: dati di esempio, taratura dell'uniformità della temperatura e dell'umidità

Il centro di taratura di Carugate è anche in grado di verificare le prestazioni di una camera climatica/un forno, dalla rampa di salita e discesa alla velocità interna dell'aria, nonché di fornire un rapporto di verifica finale.

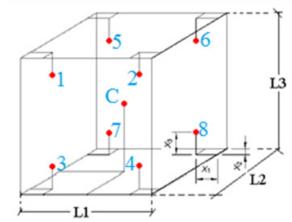
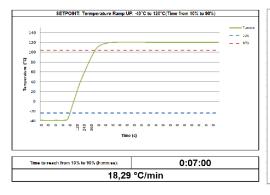



Figura 1: impostazione della misurazione con 9 punti per una camera climatica fino a 2.000 piedi

STANDARD APPLICABILI

- IEC 60068-3-5
- IEC 60068-3-6
- IEC 60068-3-11

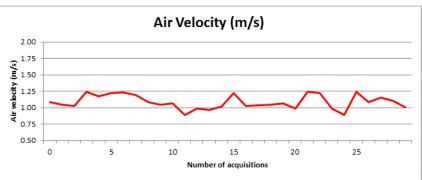


Figura 3: verifica della rampa di salita e della velocità dell'aria della camera

Verifica della conformità

Verifica dell'analizzatore di armoniche in conformità allo standard IEC 61000-4-7 (PLL, Gruppo, LP)

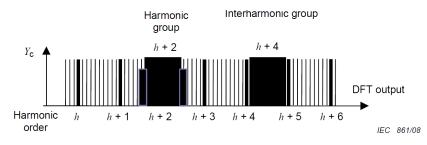
Zero Crossing

Time

Molti analizzatori della qualità della rete disponibili in commercio sono in grado di misurare le armoniche di tensione e/o corrente. Tuttavia, non tutti questi strumenti usano i criteri richiesti dalla norma di qualità della rete o delle emissioni EMC.

Il centro di taratura di UL esegue tarature accreditate in base alle norme applicabili e convalida la corretta implementazione dei seguenti tre algoritmi:

Amplitude

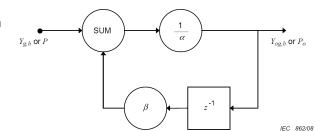

Phase-Locked Loop (PLL)

La funzione PLL (software o hardware) consente di sincronizzare la finestra temporale (200 ms – 10 cicli interi) con la frequenza di campionamento in

(200 ms – 10 cicli interi) con la frequenza di campionamento in modo che il primo e l'ultimo campione acquisiti siano uguali a zero (chiamato passaggio al livello medio).

La funzione PLL consente di evitare che le interarmoniche adiacenti possano influire sulla misurazione.

RAGGRUPPAMENTO



Il raggruppamento consente di tenere conto di tutte le interarmoniche durante la misurazione delle armoniche.

Ciascuna armonica raggruppa le 4 interarmoniche adiacenti e la 5ª pesata al 50%.

Filtro passa-basso (LPF)

Le armoniche e le interarmoniche devono essere filtrate da un filtro passa-basso digitale, come mostra la figura a destra.

PERCHÉ LO STANDARD IEC 61000-4-7 É IMPORTANTE PER LA OUALITÀ DELLA RETE?

- Gli elementi di distorsione nelle reti pubbliche possono includere interarmoniche
- Il cambio di carichi (termostati) genera interarmoniche
- I carichi non lineari (cambio di carichi, controlli non simmetrici, ecc.) generano interarmoniche
- I segnali sulle reti pubbliche sono generalmente situati tra due armoniche adiacenti
- I dispositivi di azionamento dei motori con coppia variabile causano l'oscillazione della quinta armonica che genera a sua volta interarmoniche

Analizzatore di interarmoniche e armoniche di tensione

Taratura in loco degli analizzatori delle armoniche di tensione, utilizzata per gestire la qualità della rete in conformità alla Procedura UL 00-OP-C0036, CTL-OP110, IFC 61000-4-30

Durante la taratura, i nostri ingegneri utilizzano software e hardware appositamente sviluppato da UL per le armoniche e interarmoniche. Il nostro misuratore di interarmoniche di tensione (VIHM) è un voltmetro selettivo a tre canali in grado di misurare il valore della tensione RMS per un massimo di 40 segnali sinusoidali delle armoniche/interarmoniche sovrapposti alla rete. L'apparecchiatura può essere acquistata o noleggiata.

ARMONICHE DI CORRENTE – 20 A Shunt 50 Hz

(Quantità applicata	ı	Apparecchiat tara	ura in fase di tura	Risultati della misurazione		
Parametro	Valore	Frequenza	Intervallo	Lettura	Errore	Incertezza	
Hrm 1	15,9993 A	50 Hz	20 A	16,0052 A	0,01 A	48,26 mA	
Hrm 2	0,79698 A	100 Hz	20 A	0,7973 A	0,00 A	12,02 mA	
Hrm 3	0,79694 A	150 Hz	20 A	0,8015 A	0,00 A	12,08 mA	
Hrm 4	0,79732 A	200 Hz	20 A	0,7978 A	0,00 A	12,03 mA	
Hrm 5	0,79706 A	250 Hz	20 A	0,7963 A	0,00 A	12,00 mA	
Hrm 36	0,79684 A	1800 Hz	20 A	0,8072 A	0,01 A	12,17 mA	
Hrm 37	0,79678 A	1850 Hz	20 A	0,8071 A	0,01 A	12,17 mA	
Hrm 38	0,79686 A	1900 Hz	20 A	0,8084 A	0,01 A	12,19 mA	
Hrm 39	0,79668 A	1950 Hz	20 A	0,8087 A	0,01 A	12,19 mA	
Hrm 40	0,79655 A	2000 Hz	20 A	0,8075 A	0,01 A	12,17 mA	

Esempio di rapporto: THD (intervallo 0,1 < 50%)

TENSIONE THD% - Impostazioni dell'apparecchiatura: THD, Canale 1 - Fondamentale: $120 \, V \@ 60 \, Hz$; THD: 1% (tracciabile, non accreditato)

C	Quantità applicata	ı	Apparecchiat tara		Risultati della misurazione		
Parametro	Valore	Frequenza	Intervallo	Lettura	Errore	Incertezza	
Fondo	119,9832 V	60 Hz	300 V	119,9959 V	0,0127 V	0,30 V	
Hrm 5	0,97653% fondo	300 Hz	300 V	0,97655% fondo	0,0000% fondo	0,002% fondo	
THD	0,9765%		100%	0,9766%	0,000%	0,002%	

Scopo dell'accreditamento

ARMONICHE DI CORRENTE - Misuratori di interarmoniche e THD

Area di		Intervallo e risoluzior	ie	Capacità misurazio	Tecnica, standard di riferimento.		
misurazione	Par	Ampiezza IHRM	Frequenza IHRM	U1	U2	apparecchiatura	
Armoniche e	Fondo	Da 30 V a 300 V	50 Hz/60 Hz	5,0E - 03 rel	58 μV/U	UL International	
interarmoniche della corrente CA -	Da IHRM11 a IHRM2000	Da 0,3 V a 60 V	Da 55 Hz a 12 kHz	1,0E - 02 rel	58 μV/U	Italia VIHM IEC 61000-4-7	
Misurazione	THDI	Fondo: Da 30 V a 300 V	Da 55 Hz a 12 kHz	4,0E - 03 rel	58 μ%THD/THDV	(Note 1, 2, 12)	

VANTAGGI

- Non richiede la rimozione o lo scollegamento delle apparecchiature
- Evita i danni alle apparecchiature dovute al trasporto
- Riduce al minimo le interruzioni alle attività di laboratorio del cliente

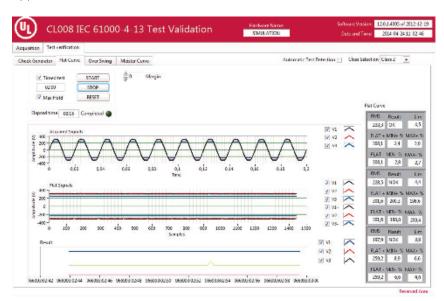
STANDARD APPLICABILI

• IEC 61000-4-7

Caratteristiche dell'apparecchiatura/del software

- Configurazione ed esecuzione rapida dei test
- Acquisizione, monitoraggio, gestione ed esportazione dei dati

Specifiche dell'apparecchiatura/del software


- Isolamento canale-canale da 600 Vrms
- Ingresso a campionamento simultaneo a 50 kS/s/ch
- Filtro anti-alias incorporato
- Intervallo di misurazione di 300 Vrms
- Connessione USB

Validazione della qualità della rete

Validazione della qualità della rete del cliente in loco

I nostri ingegneri sul campo usano software e hardware per analizzatori della qualità della rete sviluppati da UL durante la taratura. Il nostro analizzatore della qualità della rete a tre canali (3PQA) offre un intervallo di misurazione di 300 Vrms. L'apparecchiatura può essere acquistata o noleggiata. Al termine della validazione, viene emesso un certificato che fornisce informazioni dettagliate sulla misurazione senza carico e con carico massimo, tra cui un grafico della tensione, frequenza e THD riferito a un periodo di misurazione di un'ora. Su richiesta, è possibile anche applicare carichi resistivi fino a di 32 A e oltre.

VANTAGGI

- Nessun bisogno di effettuare una taratura annua dedicata dell'apparecchiatura
- Possibilità di selezionare facilmente i punti di misurazione
- Accesso ad assistenza esperta per la correzione dei problemi relativi alla qualità della rete identificati

STANDARD APPLICABILI

• ISO/IEC 17025:2005, 5.3.2

Caratteristiche dell'apparecchiatura/del software

- Configurazione ed esecuzione rapida dei test
- Facile raccolta, monitoraggio, gestione ed esportazione dei dati
- Generazione automatica di rapporti

Specifiche dell'apparecchiatura/del software

• Freq. principale: da 45 Hz a 65 Hz

• Interarmoniche: fino a 9 kHz

• Modalità di collegamento: USB

- Isolamento a campionamento canale-canale da 600 Vrms
- Ingresso simultaneo a 50 kS/s/ch
- Filtro anti-alias incorporato
- Intervallo di misurazione di 300 Vrms

Formazione completa sulla taratura e la validazione

Servizi di formazione completi per preparare tutto il team del laboratorio.

1. SCELTA E GESTIONE DELLE APPARECCHIATURE PER LE PROVE DI SICUREZZA

- Categorie delle apparecchiature usate nei laboratori di certificazione della sicurezza
- Specifiche delle apparecchiature critiche
- Linee guida per la selezione relative a:
 - Interconnettività (collegamento a sistemi automatici di acquisizione dati, rete)
 - Requisiti degli standard (valori e intervallo)
 - Prodotto da testare (intervallo di frequenza, ecc.)
 - Accuratezza (conformemente agli standard e/o IECEE OD-5014 (ex CTL DSH251), accuratezza della lettura o dell'intervallo)
 - Problemi di sicurezza
 - Intervalli di taratura
- Manutenzione ordinaria (IEC 17025) e procedure di manutenzione
- Analisi della selezione
- Gestione delle apparecchiature conformemente a IEC 17025: sovraccarico, riparazioni e taratura (regolare e prima della dismissione)

2. PROCEDURA DI TARATURA PER LE PROVE DI SICUREZZA

- Requisiti generali per la taratura interna (IEC 17025)
- · Contenuto della procedura di taratura
- · Linee guida di taratura riconosciute
- Validazione del metodo di taratura
- Validazione o installazione delle apparecchiature ausiliarie
- Esempi di procedura di taratura: temperatura, potenza attiva, ecc.

3. PROCEDURA DI TARATURA PER LE PROVE EMC E D'IMMUNITÀ

- Procedura di taratura per le emissioni
- Procedura di taratura per l'immunità
- Validazione o installazione delle apparecchiature ausiliarie
- Esempi di procedura di taratura: amplificatori RF, armoniche e flicker, ecc.

4. METODO DI PROVA PER LE CORRENTI DI DISPERSIONE

- Requisiti conformi a IEC 60990
- Metodi di misurazione per le correnti di contatto e la corrente del conduttore di protezione
- Effetto fisico
- Allegato B: uso del piano conduttivo
- Figure 3, 4 e 5 dello standard IEC 60990
- Problemi di configurazione e taratura

5. COLLABORAZIONE CON IL CENTRO DI TARATURA

- Richieste di taratura in base all'utilizzo dell'apparecchiatura
- Intervallo corretto, offset e numero di punti di taratura
- Richiesta di verifica dell'accuratezza (conferma metrologica in base alle specifiche)
- Gestione delle regolazioni, rapporto sui valori fuori tolleranza
- Accettazione del certificato/rapporto di taratura
- Selezione dei parametri critici per l'analisi della deriva (intervallo di taratura)
- Errori comuni commessi nei centri di taratura (rapporti, metodi di taratura, procedure standard)

6. INCERTEZZA DELLA TARATURA E DELLE MISURAZIONI PER LE PROVE DI SICUREZZA

- Incertezze di tipo A e di tipo B
- Elementi statistici di base: media, deviazione standard, distribuzione, ecc.
- Elementi che contribuiscono all'incertezza di misurazione e relative fonti
- Misurazione diretta e derivata
- · Quantità staticamente indipendenti o correlate
- Dichiarazione dell'incertezza di misurazione (ripetibilità e riproduzione)
- Esempi di calcolo dell'incertezza di misurazione per la misurazione diretta (potenza attiva) e quella derivata (temperatura degli avvolgimenti)

7. CONFERMA METROLOGICA PER LE PROVE DI SICUREZZA

- · Definizioni di base
- Requisiti standard relativi all'accuratezza
- IECEE OD-5014 : accuratezza dell'intervallo o della lettura
- Impatto dell'accuratezza dell'intervallo o della lettura
- Definizione dell'incertezza delle misurazioni interne

8. CONFERMA METROLOGICA PER LE PROVE EMC

- Definizioni di base
- Requisiti standard relativi all'accuratezza
- IECEE OD-5014: accuratezza dell'intervallo o della lettura
- Impatto dell'accuratezza dell'intervallo o della lettura
- Definizione dell'incertezza delle misurazioni interne

9. MODULAZIONE DELL'INTERVALLO DI TARATURA

- Standard di riferimento
- Raccomandazioni del produttore (specifiche)
- Prove della stabilità dei parametri critici
- Rischi di rintracciabilità

10. REGOLE DI SICUREZZA DA SEGUIRE PER LE APPARECCHIATURE IMPIEGATE NELLE PROVE DI SICUREZZA

- Documentazione tecnica relativa alle apparecchiature
- Sezioni relative alle specifiche, alla manutenzione e alla sicurezza
- Differenze tra pericolo e rischio
- Classificazione delle apparecchiature in base al rischio
- Rischi specifici connessi alle apparecchiature meccaniche, elettriche e termiche

11. QUALITÀ DELL'ALIMENTAZIONE PER I LABORATORI DI PROVA

- Requisiti IEC 17025
- · Selezione dei punti di misurazione
- Apparecchiature e accuratezza
- Algoritmo per il calcolo delle armoniche e interarmoniche (2-9 kHz)
- · Armoniche di tensione e corrente
- Apparecchiature in commercio
- Problemi di misurazione con le apparecchiature non conformi a IEC 61000-4-7
- Certificati di taratura emessi dal centro di taratura Carugate di UL
- Incertezza di misurazione

12. ISO/IEC 17025

- 5.2 Personale: formazione, qualificazione, manutenzione
- 5.3 Disposizione del laboratorio e condizioni ambientali
- 5.4.7 Incertezza di misurazione
- 5.5 Apparecchiature per le misurazioni e le prove: idoneità e gestione
- 5.6 Tracciabilità delle misurazioni: taratura
- 5.9 Garanzia della qualità dei risultati delle prove

Informazioni sul laboratorio di Carugate

Il laboratorio di UL a Carugate, fondato nel 1984 e chiamato SICUR CONTROL, è entrato a far parte del gruppo UL nel 2003. Occupa una superficie di circa 3.700 metri quadrati distribuiti in due edifici. Vi lavora un numeroso gruppo di ingegneri e tecnici, che si occupa di diversi settori: sicurezza elettrica, compatibilità elettromagnetica, prestazioni, servizi di conferma metrologici (taratura) e automazione.

Il laboratorio di Carugate è presente nel settore elettrico da circa 30 anni ed è attualmente accreditato da IECEE, ACCREDIA, OSHA, IAS e altri ancora.

QUESTO LABORATORIO FORNISCE SERVIZI DI TESTING E CERTIFICAZIONE PER LE SEGUENTI AREE:

ACCESSO AL MERCATO INTERNAZIONALE: grazie alle succitate certificazioni, questo laboratorio è in grado di fornire rapporti e certificati di prova conformi allo schema IECEE CB (HOUS e CONT) nonché rapporti ILAC-ACCREDIA e riconosciuti sia a livello europeo che mondiale.

INVERTER: grazie alla sua decennale esperienza e all'aggiornamento continuo degli ambiti di certificazione, il laboratorio di Carugate è ora in grado di testare e certificare inverter fotovoltaici ad alta potenza, inverter eolici e altri tipi di inverter in conformità con le Direttive europee sulle apparecchiature a bassa tensione e sull'compatibilità elettromagnetica. Questi test possono essere effettuati anche presso le sedi dei clienti. Il laboratorio è specializzato e accreditato anche per effettuare i test richiesti da vari paesi in Europa, Asia e Australia, secondo le norme e i regolamenti internazionali, europei e locali.

EMC: i test disponibili si riferiscono alle seguenti aree: elettrodomestici, sistemi di illuminazione, apparecchiature mediche e high-tech, strumentazione da laboratorio, apparecchiature ISM (industriali, scientifiche e mediche) e per la conformità agli standard dei settori commerciali e industriali. È possibile anche emettere certificati CE, rapporti CB conformi allo schema IECEE (EMC) e rapporti ILAC-ACCREDIA riconosciuti nell'ambito del sistema di certificazione europeo.

TEST SULLE PRESTAZIONI E SPECIALI: misurazione dell'esposizione delle persone alle vibrazioni (trasmissione delle vibrazioni alla mano/al braccio o a tutto il corpo) e test speciali (termici, acustici, EMC, dimensionali, di sicurezza, ecc.); specifiche personalizzate in base alle esigenze dei clienti.

TEST PER LA CONFORMITÀ ALLE NORME UL: finalizzati a ottenere il riconoscimento del marchio UL e cUL (Stati Uniti e Canada) per la maggior parte delle categorie di prodotti. Per informazioni più dettagliate, vedere il Catalogo delle funzionalità del laboratorio e il Catalogo dei servizi del laboratorio.

SERVIZI DI TARATURA: oltre alle offerte relative a servizi di taratura standard, il Centro di taratura UL Italy è in grado anche di offrire ai clienti servizi di taratura specificatamente adattati alle loro esigenze.

SERVIZI DI AUTOMAZIONE: project management, progettazione, produzione, programmazione, installazione, avvio dei progetti, assistenza in ambito operativo.

Per informazioni sui nostri servizi di taratura accreditati per i laboratori di sicurezza e sicurezza/EMC, consultare "Servizi di taratura UL: Taratura accreditata per i laboratori EMC".

UL International Italia S.r.l.Via Delle Industrie 1
20061 Carugate (MI) - Italia
Tel: +39 02 92 52 64 27

Responsabile del laboratorio Ing. Dario Rivoltella Tel: +39 02 92526427 Dario.Rivoltella@ul.com

